CRADA NFE-08-01671 – Materials for Advanced Turbocharger Design

Agreement - 17257

PI – Philip J. Maziasz, ORNL and Marc Wilson, Honeywell

Oral – June 19, 2014

Project Area – Materials for Combustion Systems/High Efficiency Engines

Project ID – PM038

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

- Project began September, 2009
- Project ends September, 2014
- Project is >75% complete

Budget

- Total Project Funding
 - DOE Share 50%
 - Honeywell 50%
- FY12 Funding \$300,000
- FY13 Funding \$0
- FY14 Funding \$150,000

Barriers

- Barriers addressed include:
 - Difficulty in simultaneously increasing efficiency and reducing emissions
 - HECC Technologies increase exhaust temperatures for turbochargers

Partners

- Honeywell suppliers for turbocharger components
- Engine customers for turbochargers (LD and HD engines)

Relevance

This CRADA project is relevant to a key technical gap in Propulsion Materials that supports the following Advanced Combustion Engine goal:

2015 Commercial Engine – Improve Efficiency by 20% over 2009 baseline efficiency

Turbocharging improves fuel efficiency particularly in gasoline engines

Technical Objective – Higher temperatures (>750°C, diesel, >950°C gasoline) exceed the strength and temperature capability of current materials, particularly cast-iron for turbocharger housings

Impact – Turbocharger housing and other components with more temperature capability and strength will enable higher, sustained operating temperatures. Stainless steel turbo-housings will also reduce weight and retain exhaust heat relative to cast-irons

Approach - Caterpillar Commercialized CF8C-Plus steel for the CRS component that are on all heavy-duty highway truck diesel engines since 2007 (Oct, 2006)

SiMo Cast-iron

steel

CF8C-Plus

Caterpillar Regeneration System (CRS) Housing

 Exhaust combustor (turbo exhaust + injected fuel) to clean out particulate filters: very high temperature and
 rapid cycling conditions Over 500 tons of CF8C-Plus cast for CRS application (no failures, some >6 y)

Approach – Cast Keel Bars or Blocks for Properties Testing

alloy	Cr	Ni	Mn	Мо	Nb	С	N	Si	Fe
CF8C- Plus	19.1	12.5	3.5	0.35	0.94	0.09	0.24	0.6	bal
HK30- Nb	25.2	19.4	1.2	0.27	1.2	0.30		1.6	bal

Approach – Follow Honeywell Requirements for Qualifying Turbocharger Materials

Milestones

- FY2013, Q1 complete neutron-scattering residualstress measurements on wheel/shaft assemblies with stress-relief heat-treatments (Dec, 2012, complete)
- FY2013, Q3 begin creep-tests of cast CF8C-Plus stainless steels to facilitate gasoline turbocharger applications (July, 2013, complete)
- FY2014, Q1– Complete diesel engine exhaust testing of CF8C-Plus steel at 800C (Dec. 2013, complete)
- FY2014, Q2
 Evaluate oxidation resistance of CF8C-Plus tested in diesel exhaust environment (Mar. 2014, complete)
- FY2014, Q3 Assist Honeywell in indentifying appropriate foundries for prototyping CF8C-Plus housings (June 2014, on track)

Technical Accomplishments – Upgrade Turbo-Housing to Cast Stainless Steel

ORNL developed CF8C-Plus cast stainless steel with more strength than HK30Nb stainless alloy > 750°C.

Both have ten times more strength than SiMo cast-iron above 500-600°C

Current SiMo cast-iron turbocharger housing for diesel engine product

tation name

Technical Accomplishments – Upgrade Turbo-Housing to Cast Stainless Steel for More High-Temperature Creep Resistance

- CF8C-Plus cast stainless steel has significantly better creep-resistance than SiMo and Ni-resist cast irons at 700-900°C
- •CF8C-Plus stainless steel cost is about 33% less than HK30-Nb alloy

Technical Accomplishment – Oxidation Testing in a Diesel Exhaust Environment at 800C

800C comparison (Lab - 100h cycles, Genset - 1h cycles)

Preliminary tests indicated a substantially lower rate of oxidation after testing in actual diesel exhaust vs. laboratory air + 10%water vapor at 800C

Technical Accomplishment -Physical Properties – Thermal Expansion

Technical Accomplishment - Physical Properties - Thermal Conductivity

What's Next - High Temperature Material

Issues and Barriers

- Decreased funding with increased Honeywell need for expensive testing (fatigue, creep, TMF)
- Upgrade of creep machines and fatigue machines after extended high temperature testing
- Installation of new diesel exhaust facility at ORNL
- Honeywell CRADA needs to be extended for 2 more years before September, 2014

Summary

- Relevance Turbocharging improves fuel efficiency of gasoline engine vehicles
- Approach/Strategy Work with Honeywell phased approach to qualifying CF8C-Plus steel for turbochargers
- Accomplishments Completed Phase 1 testing creep, fatigue and thermal fatigue qualifying CF8C-Plus steel
- Collaborations SF&E, Honeywell and potential engine customers (Caterpillar, Ford, etc.)
- Proposed Future Work Phase 2 4 testing of CF8C-Plus, particularly fatigue and creep testing.

